Veröffentlichungen 

Artikel und Präsentationen aus dem Konsortium zum Projekt just better DATA

Veröffent-
lichungen 

Artikel und Präsentationen aus dem Konsortium zum Projekt Just Better Data

Veröffentlichungen

  1. Daniel Bogdoll, Lukas Bosch, Tim Joseph, Helen Gremmelmaier, Yitian Yang, J. Marius Zöllner
    Exploring the Potential of World Models for Anomaly Detection in Autonomous Driving
    In: 2023 IEEE Symposium Series on Computational Intelligence (SSCI)
  2. Philipp Rigoll, Jacob Langner, Eric Sax: Unveiling Objects with SOLA: An Annotation-Free Image Search on the Object Level for Automotive Data Sets, IEEE IV 2024, 04.-06.06.2024

  3. Philipp Rigoll, Laurenz Adolph, Lennart Ries ,Eric Sax: CLIPping the Limits: Finding the Sweet Spot for Relevant Images in Automated Driving Systems Perception Testing , ITSC 2024, 24.-27. Sep. 2024

  4. Daniel Bogdoll et al: AnoVox: A Benchmark for Multimodal Anomaly Detection in Autonomous Driving, Sept 2024

  5. Daniel Bogdoll: MUVO: A Multimodal Generative World Model for Autonomous Driving with Geometric Representations, Sept 2024

  6. Marc Uecker Prof. Dr. J. Marius Zöllner: Can you see me now? Blind spot estimation for autonomous vehicles using scenario-based simulation with random reference sensors, IEEE IV 2024, Jeju, South Korea, 2.-5.6.2024 

  7. Philipp Reis, Philipp Rigoll, Eric Sax: Behavior Forests: Real-Time Discovery of Dynamic Behavior for Data Selection, Canada, Edmonton, 24.-27.9.2024

  8. Daniel Bogdoll, Jan Imhof, Tim Joseph, J. Marius Zöllner: Hybrid Video Anomaly Detection for Anomalous Scenarios in Autonomous Driving, Conference on Robot Learning, Munich, 6.11.24

  9. Daniel Bogdoll, Noël Ollick, Tim Joseph, J. Marius Zöllner: UMAD: Unsupervised Mask-Level Anomaly Detection for Autonomous Driving, CoRL 2024, Munich, 6.11.24

Projektmaterial

Zur Zeit noch kein Projektmaterial verfügbar.

Nach oben scrollen